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The Completion Time of a Job on Multi-Mode Systems®

V. G. Kulkami!, V. F. Nicola! and K. S. Trivedi*

Abstract

In this paper we present a general model of the completion time of a single job on a computer sys-
tem whose state changes according to a semi-Markov process. When the state of the system changes the
job service is preempted. The job service is then resumed or restarted (with or without resampling) in the
new state at, possibly, a different service rate. Different types of preemption disciplines are allowed in the
model. Successive aggregation and transform techniques are used to obtain the Laplace Stieltjes
Transform of the job completion time. We specializse to the case of Markovian state process. Finally, we

demonstrate the use of the techniques developed here by means of an application.

® This work was supported in part by the Air Force Office of Scientific Research, by the Army Research Office under contract
DAAG29-84-0045 and by the National Science Foundation under grant MCS-8530200.

{ Curriculum in Operations Resesrch and Systems Analysis, University of North Carolins, Chapel Hill, NC 27514.
1 Department of Computer Science, Duke University, Durham, NC 27706,
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1. Intveduction

A computer system may change its state (e.g., its mode of operation) due to different events. The
system behaviour can adequately be described by a stochastic process, referred to as the "structure-state
process”. Consider a job to be processed on such a system. The job service is preempted due to changes
in the state of the system, and may be continued or repeated at, possibly, a different service rate.
Clearly, the job completion time (i.c., the total time spent in the system to complete the job) is affected
by changes in the system operation. It is important to distinguish different types of service-preemption
interaction. In the preemptive-resume (prs ) discipline, the job service is resumed from the point where it
was preempted. In the preemptive-repeat-identical (pri) discipline, the job is restarted from its beginning.
In the preemptive-repeat-different (prd) discipline, the job is restarted with a new work requirement

which is statistically independent, and identically distributed to the original work requirement.

Several authors have studied the job completion time in special cases. Gaver [4] and Nicola [8] con-
sidered a single server system subject to different types of Poisson interruptions. In their system a job is
serviced only in one state at a constant service rate. Castillo and Siewiorek [2] presented a model with
two types of Poisson breakdowns and repair. Puri [10] studied the distribution of the cumulative service
in the case where all preemptions are of the prs type; this is shown to be dual to the distribution of the
completion time of a given job {7]. Under Markovian assumptions concerning t.l.xe system changes (i.e., a
Markovian structure-state process), we presented a detailed analysis in the cases where different, pure and
mixed, types of preemptions are allowed in the model [6,7). In (5], Iyer et al. considered the computa-
tional aspects and developed a procedure for the computation of the moments of the cumulative service in

the case where all preemptions are of the prs type and the structure-state process is Markovian.

In this paper, we extend the results presented earlier to silow semi-Markovian system changes.
Furthermore, all types of preemptions may be present in the same model. This is a general framework
that includes all previous models as special cases, and extends the results to permit the analysis of fairly
complex systems. In section 2, we describe the mathematical model. The job completion time is analysed

in section 3. We apecialize to the case where the stracture-state process is Markovian in section 4. In sec-

tion 5, we demonstrate the use of the techniques developed here by means of an application.
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2. The Basic Moddl b
Vo
Consider a job with work requirement B, to be processed on a computer system. The work require- X

ment is measured in work units, e.g., number of instructions to be executed. Assume that B is a positive
random variable with cumulative distribution function G(2) = P(B < z). The computer system can
be described by its structure-state process {Z(t),t > 0}, which is assumed to be a continuous time sto-
chastic process defined on the state space {0,1,2,...,n }. The work rate of the computer system is r; > 0
(units of work per unit time) when it is in state ¢. The state 0 is an absorbing “failure” state with
ro = 0. Each state in {1,2,...,n } is assumed to be prs or pri or prd, as defined in the previous section.
Let S,(53,53) be the set of all prs (pri,prd) states. Thus 5,,55,5, is & partition of {1,2,..n}. We

assume that the structure-state process is stochastically independent of the work requirement of the job.

Every time the system visits a pri or prd state all the previous work is lost and the job is restarted.
Define T (z) to be the amount of time needed to complete a job with work requirement of z units; and
T to be the time needed to ;:omplete a job with random work requirement, B. We are interested in the
distribution of T under the usumpﬁon that the job starts being processed immediately after the transi-

tion of the structure-state process to the initial state.

Define the distribution functions:

Fi(t,g)=P(T(z) <t |Z(0)=1), tx 20, 1<i<n

F(t,2)=P(T(z)<t), tz 20
Fi(¢)=P(T <t |2Z2(0)=i), 1<i<a,t20
F(t)=P(T <), t>0.

Define the LST's":
Fi (e,2) = E(eT18)| 2 (0)=1), 2201<i<mn,
F (s,2)=E(e~Tle)) = f:F,-- (e ,2)P(Z(0)=rs), £ >0 :_‘

iml o]

Fi(o)=E(e™7 | Z(0)=i) = }DF.-' (s ,2)dG (2), 1<i<n Ej
) o

" -

* (" ) denotes the Laplace Stieltjes Transtorm (LST'). ::1
:‘,:1

A
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F ()= E(c¢™T) = ‘z::lrf (8 )P(Z (0)=i).

It is clear that F; (¢,z) and F; (o) are the key quantities in the analysis of T. In the remaining
analysis, we make the assumption that {Z(t),t > 0} is a semi-Markov process (SMP). Let H be the
holding (sojourn) time in the initial state, i.e.

H = min{t 2 0:Z(t) £ Z(0)}.
Let

" Qij(z)=P{H < 2;Z(H+)=; | Z(0)=i}, 0<i,j <n,
be the distribution of the sojourn time in state ¢, given that a transition to state 5 took place.
Q(z) = [Qi;(z)) is called the kernel of the SMP. Let

Qi(z) =~ Z.:er(f)g 1<¢<n,

i=0
be the distribution of the sojourn time in state ¢, and define
o0
Qij(s) = { ¢~ dQii(z) -

and

Q(o)= { ¢ dQi(z).

3. The Anslysis of the Completion Time

In this section we describe a systematic procedure to derive the distribution F(t) of the job comple-
tion time 7. The method of analysis is best described as ‘‘progressive aggregation”. To begin with, we
study the structure-state process restricted to move only in §,, then we study it restricted to $, U Sa.

and finally we study the general case, when it moves freely in S, U S, U S
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3.1. The Analysis of the Completion Time in the prs Set of States
Suppose the structure-state process is initially in S, and let
Uy=min {¢t > 0:2(t) & S,}.
Thus, U, represents the first time the structure-state process visits a preemptive repeat state or the
absorbing failure state. Now consider a job with work requirement z; its job completion time is T'(z). If

T(z) < U, the job completes while the structure-state process is still in S, if T(z) > U, the job has to

be either restarted in a state in S, U Sy or the job is never completed due to an absorbing failure. Define
Myi(s,2)=E(eT0);T(z) S Uy | Z(0)=i), i€S),

to be the LST of the job completion time T (s) when the job completion takes place before the
structure-state process leaves the set S,. Notice that M, ;(s,2) is the LST of a possibly defective ran-

dom variable, since P(T(z) < U;| Z(0)=s) < 1.
Define, for§ € Sy and § ¢ S,,
Myij(0,2)=E(™"5T(2) > UpZ(Uyt)=j | Z0) =5), § €Sy, j &S,
When the structure-state process starting in ¢ €5,, leaves S, before the job completes and enters state

J &€ S,, the LST of the total time spent in the set S, is given by M,-_;.,-(c 2) . _Now let’

M, s ,w)=}°e"’M,:,-(a x)z, i €S,
)

and

M i(s,0)= Z e™M,;i(s,2)dz, i €5, 5 &S,

The theorems below give the equations to obtain the above quantities.

Theorem 1. The double transforms M ,-,.-‘(a W), 1 € S, satisfy the following equations

i

M s w)= 1-Q (s+rw)+ ¥ Qaloa+rw)M, Jo,w), §€S,

s+ w vES, (1)

Proof: Conditioning on H, the sojourn time in the initial state, we get

* (*) denotes the Laplace transform.

"
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: ~T(s) e/, ifh 2z/n
s). = =g ) = -
E(*hT(z) S U H=hZ0=i)={ ,w 5 M (s,5-rih), ifh <z/r.
sES,
Unconditioning on H, we get
00 ‘/'l
Mo, )= [ ™™ aQh)+ T [ e Msls,2-rih)dQu(h)
s/r, kES, 0
s/e,
= ¢-“/"(1-Q.‘(2/".‘))+ Y J e Miu(e,z-rh)dQu(h).
kcs, ©

Multiplying both sides by ¢~ and integrating, we get

s/,

M s,w)= je--'e"”'-u-q..(z /ri)dz + e™ [ e My (s,2-r;h)dQy (h )dz
1) 0

ot— 8

res,

which yields equations (1). Q.E.D.

Thcorem 2. The double transforms M, ;’;(s ,w), 1 €S,, § & S, satisfy the following equations

b l - - e . .
M, i(e,0)= - Qij(e+r,w) + tEs Qa (s +r,w)M, 0 ;(o,w), €S, j&S5,. (2)
€S,
L':;'. Proof: Conditioning on H, the sojourn time in the initial state, we get
-
} -,
P E(e”'\T(2) > UpZ(Us+) = 5 | H=h ,Z(0)=)
5 e, ifh<z/r; and Z(h)=; &S5,
::‘- {c"‘M{'.',-(g,z—r.-h)’ if A <2/f|' and Z(h)=k€5, .

Unconditioning on H, we get

s/r, s/r,
: My ilsz)= [edQ;(h)+ ¥ [ ¢ My ile,z-rih)dQu(h).
- ° rES, ©
) Multiplying both sides by ¢~* and integrating, yield equations (2). Q.E.D.

Remark: I the structure-state process is a CTMC, the above theorems yield propositions 5.1 and 5.2 in

[7)-

- . s - . - .
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Equations (1) and (2) can be solved to get My Yo ,w) and My %(s,w), i€S,, j&S,, which

can be inverted with respect to w to obtain M; ;(s,2) and M,; ;(s,z), respectively. If the structure-
state process is a CTMC, this inversion can be carried out rather easily (7).

The quantities M, ;(s,7) and M,; ;(2,z) completely describe the job completion process while the
structure-state process is in §,. Using these quantities we can analyze the job completion process while

the structure-state process is in §,,=5,U S, .

3.2. The Analysis of the Completion Time in the prs-pri Scts of States
Suppose the structure-state process is initially in Sy, (i.e., in S, U S;), and let

Uip=min {t 2 0:Z(t) & Sy}
Thus, U, represents the time until the structure-state process visits a prd state or the absorbing failure
state. Now consider a job with work requirement z; its completion time is T(z). If T(2) < U,,, the
job completes while the structure-state process is in Syg. If T(z) > U,y the job has to be either res-
tarted in a state in S5 with a resampled work requirement or the job is never completed due to an absorb-

ing failure. Define
Mpyi(s,z)= E(e™T6LT(2) < Uy | Z(0) =), €Sy,

to be the LST of the job completion time T (z) when the job completion takes place before the process

leaves S;;. For i €5 ;,and &S5, , define
. v ) . . . .,
Mlz.-'.:'(‘ z) = E(C-. lQST("’) > U, Z(Uygt) = 1Z2(0)=1), §€S1,, F&€Sy2.

When the structure-state process, starting in s € 5,5, leaves S, before the job completes, and enters a

state ; @ 5o, the LST of the total time spent in the set S, is given by M,.g',-',-(a ,z) . Now let

s/r,
o0 (8,2)=¢*/"(1-Qi(z/r;) + ‘zs _!; e MM, (e,2-r;h)dQu(h), (€S,
€

1

and

g]/r, s /e

"-‘}(‘,3)= fe'“‘Qu(“‘* f‘-"Ml-.h.j('»"ﬂ‘“)‘Q&(h)r 1,0€S,.
0 kS, ©
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.....

. - '.'..-

v " LI AN A A

. ) . .
addend

Tt
() LN B
dod L ad

‘e

el e”
8

a_a LA VAP P SN

La




RCNCHA i e AL A AR A A R o g g

The next theorem provides a method of computing the LSTs My5;(s ,2), § €S .

Theorem 8.

a) The conditional LST's Mz ;(s ,z), s €S, satisfy the following equations
Misle.2) =0 (0,2)+ 35 hjlo.e)Muilo,z), (€S, @)
JES,

b) The conditional LSTs M ,;';(a ,z), 1 €5,, are given by

:-: Mu.(‘ 2)—-M1,(0 2)+ EMI.)(J Z)Mw,(a 1’) aGS,

- j€S, ' (4)
‘ Proof.

a) Let § €85, be the initial state. Conditioning on the sojourn time, H , in the initial state, we get

E(eT¢) ;T(z) < Uy | Z(0)=i , H=h)

-z /1,

' ith>z/r
e“".}: Myga(e,2)

€5,

et Y (M“(a Z-r h )+ E M“ (8,2-rh)M g i(s,2)), ifh <z/r;.
ks,
Unconditioning on H and rearranging yields equations (3).
b) Let § €S, be the initial state. Then

E(e™Tt)T(z) < Uy | Z(0) = i)

= E(e™TUiT(z) S U [2(0) = i)+ E(eTELU, < T(2) < Uy | 2(0) = i)

It follows that -
- - -~ . . - -
Mpi(e,z2)=M;(s,2)+ Y, E(e T(z) > UpZ(Uyt) =7 | Z2(0)=1) M3 (s ,2) o
FESy ':i
which yields equations (4). Q.E.D. ]
R

Remark: If the structure-state process is a CTMC, the above theorem produces theorems 5.1 and 5.2 in -
o
[7]. ~
5
S
]
-.'.1
-
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The next theorem provides a method of computing the LSTs M ,'2'.- j(8.,2), 1 €812, § €S51o. First, define

s /e, s/r,
a;(8,2) = fc"‘dQ.,(h)+ 25 e My, (s,2-rh)dQu(h), i €Ss, JESn
, O
and
z/e, 2/,
bﬁ(’;2)= fc_"dQ.'g(h)'f’ 2 fe-..Ml:a,k("z_'il)inm(h)’ '.vkes‘Z-
[4 mES, 0
Theorem 4.

a) The conditional LST's M 12.,;(8,2), €8s, 5 €Sy, satisfy the following equations

Ml-2.|'.j(’ 2) = a;;(s 2) + E ba (s y’)Mx-zk,,'(‘ x), €Sy, 1¢S5, (5)
EES,

b) The conditional LST's My, i(6,2), V€S, § €Sz, are given by
Mm- ,(0 x) = Mx. ,(' z) + 52 Mn l(’ ’)th ;(’ z), (€S, I&S1 (6)
2
Proof.
a) Let § €S, be the initial state and j ¢ S,;. Conditioning on H, the sojourn time in the initial

state, we have

E(e % (z) > Up,Z(Uipt) = j | H=h,2(0) = 1)

— ifh <z/r,and Z(h)=3¢&S,,
= | e My i(s,2), ifh <z/r,and Z(h)=k€ES,
e My, j(e,z-rih)+ 3 My m(8,2-r;h )Mz ;(8,2)], fh < z/r; and Z(h)=k €S,
meS,

Unconditioning on H, yields

z /v, 2/r,
My i(e,2)= [ edQuh)+ ¥ [ ™ M i(e.2)dQu(h)
0 kcs, 0

s /e,
+ 5 f e My, (e, 2-rih)dQu(h) + Y e My (8, 2-7h )Mo i(e,2)dQu ()]
kes, o meESy

Rearranging yields equation (5).
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b) Let s €S, be the initial state and 5 €55, Then

E’(c-'u";T(z )> U102 (Uygt)=5 | Z(0)=1)
= E(¢”'}T(2)> U1, 2(Uy+)=5 | Z(0)=i) =

+ B E(”'NT(2)>U0,2(Uy+)=k | Z(0)=i )E(e™ V8T (2)> Vo2 (Usgt)=3 | Z(0)=k). 1i3:

i rES,

Rewriting yields equation (6). Q.E.D.

The stochastic properties of the job completion process while the structure-state process is in 5y are
r completely described by the quantities M,;(s,z) and M 120.7(6,2), f €S2, § €S2, Knowing these r
quantities we can determine the distribution of T, the job completion time, as will be shown in the next

section.

s L

3.3. The Analysis of the Completion Time in the prs-pri-prd Sets of States

In this section we describe the method of computing the LSTs F; (s), s €S, U S;U Sy. The

main result is given in theorem 5. First, let us make the following definitions. For i €S,

gils) = {e*'"-u-oi(z/r.- ))4G (z)

oo s /1, .
+ Y [Mgu(e.2)( { ¢~ dQu (h))dG (z) A

¥ES, 0

s /e,

+ [ e Mpu(e,z-rh)dQyu (h )G (z). ':"-.:
(]

seS,

ov— 8

For l,)esS

o */1

:.,.,.(.)-{ { ¢~ dQi; (h)dG (z) -

s /e,

- + 3 IM,;,._,-(-.z)({ e dQu (h ))dG (z) =

YN




y
* + B[ [ e My, i(6,2-r;4)dQ, (A )dG (2).
) kes,0 o
- Fors€S; U8,
Misie) = [Miis 214G (2)
and
% w
2 Muii{e) = [Mizi 0 )G (2), j€5,U Sz

- Theorem 5.

Fi(s)=gi(e)+ g:s hij(s)Fj (s), $€ESs

b) The LST's of job completion time, F; (s), for i €5; U S, , are given by

I'.'.'- (C)SM;&.'(‘)‘F 2 M{g',",'(‘)Fi-(‘ ), ieS,USg.

€S,
Proof.

a) The LSTs of job completion time, F; (s ), for i €Sy, satisfy the following equations

(7)

(8)

a) Let § €S, be the initial state. Conditioning on H, the sojourn time in the initial state, and on

the initial work requirement B, we have:
E(e™T | B=z ,H=h ,Z(0)=i)

e/ it h>s/n

T e Y Fi(s)+ e Y Mua(ez)+ Y Ml;.h,j(‘ % )F,'. ()]

rES, rES, JES,

+e Y Mpulez-rih)+ 3 My (e a-rh)F; (o)),

kes, JES,
Unconditioning on H, yields
E(e™T | B=1,Z(0)=1)

= "(1-Qi(z /7))

if A <3/".‘.

—yee
R
U 2

. ..'.“AAl v, v
]

'..F.., Yo e e e,
. 5 RN
’ M e

"
o
*

:
.
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s/fr,

L + B[ "R 0

K 2ES, 0 J€S,

+ Y [ e Masz-nh)+ ¥ My, i(e.2-rh)F; (¢)dQu(h).
k€S, 0 JES,

Unconditioning on the initial work requirement, B, and rearranging yield equation (7).
b) Let ¥ €5, be the initial state. Conditioning on the initial work requirement, B, we have

: E(e™T | B=2,Z(0)=i)

= E(¢™;T < Uy |B=1,Z(0)=i)

- + D E(™ST > Uyg;Z(Uigt)=5 | B=2,2(0)=i) E(e¢~T | Z(0)=3j)
- i€Ss,

': =M1.g.'(l,1‘)+ 2 Ml-ﬂ\l'.i(.v’)Fj.(‘)-

o JES,

- Unconditioning on B, yields equation (8). Q.E.D.

Theorem 5 provides the LST of the job completion time given the initial state. We recall that the

job starts being serviced upon the transition of the structure-state process to the initial state.
The procedure to compute the distribution of the job completion time can now be stated as follows:
1. Obtain M,;Ys,w), § €S, by solving equations (1).

2.  Invert M,'.,-'(a ,@ ) with respect to w to obtain M,:,-(n 2), $ES,.

e
Vet tete ety

3.  Obtain M,;’;(e,w), §€S,, s & S, by solving equations (2).
5 4. Invert M,;’;(s ,w) with respect to w to obtain M,, ;(s,2), V€S, 5 & S,.
5. Obtain M;;(s,2), §€ES3, by solving equations (3).

6. Compute M,,(s,2), i €S,, by using equations (4).

P )
-3

Obtain My, ;(s,2), §€Sy, 5 & Sy, by solving equations (5).
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8. Compute Myy; ;(6,2), § ES,, § €S\, by using equations (6).

9.  Obtain F; (s), i €S}, by solving equations (7).

10. Compute F; (s), § €S, U 53, by using equations (8).

11. Compute F () = 3 F; (s)P(Z(0)=i).

12. Invert F () to obtain F(t)=P (T <t).

'_.: It should be noted that for a general SMP the problem of inversion is quite difficult. In the next
e
: section we illustrate the procedure for a simple system with a structure-state process that is a CTMC. In
section 5 we also consider an application with a semi-Markovian structure-state process.
4. A Speciel Case: A Markovien Structure-Statc Process o
Consider a system with four structure states {0,1,2,3}. State “0” is an abeorbing failure state.
- State “1” is prs, state “2” is pri and state “3” is prd. Thus, S, = {1}, Sg= {2}, S5 = {3}. The P'J
- structure-state process is a CTMC with ),; being the rate of transition from state *i® to state *5" :}-‘1*
- (5 9 7). The reward rates in the states “1”, “2” and “3” are r,,r; and r,, respectively. As state “‘0” ::::
- n"‘
3
is absorbing, we have X\p; =0, for all j, and rg==0. Let X; = Y X;; be the total transition rate out t‘j
AR §=0 v
ER .
- of state ", o
<
- We follow the procedure stated in section 3 to solve this example. =
Step 1 8 2. Obtain M, ;" (s ,w ) from equation (1).
':- R '1 b ::::
- - E
Ml.l (',II) l+le[‘ Ql (‘+rIW)] '
N - l A\ | = ry :..4
. e+ 0 s4r w4, s4+r WA .‘1
- -
v Inverting with respect to w, we get :ﬁ
5 &
: =
v -
e 2ttt I T A o S Sl el e P P N A R I S T P :::

-
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s

- . A /' f:-

Mig(s,2)= e, 3

where we have defined :'_3

"

. ¢ = c‘(o-ﬂ.,’/r- , f = 1,23 o

-::: Step 8 8 4. Obtain M 1:1.’2 (s ,w) and M, (s ,w) from equation (2). ’..-'
~: ;
. - 1 .- A2 ’

! Ml.l.?(‘ rw) _W- Ql2 (‘ +'lw) ‘lﬂ(l +f1w+h) ' "
§ - . 1 .- 13 ’.

i | Mps(s,w) == Qs (e+rw) Y P W -
:
b~ >
. Inverting with respect to w, we get L
- A ."..'

Mya(e,2)= m(l-e 1)

: Ms -
N = em————f ] A

N Miaa (o) = g tt-e): o
*- Steps 5 & 6. Obtain M, (#,2) by solving equation (3). '
: Mins(o.5) = 94 (0.,2) + ba (0.6 )My (o)

! i Ga) i

> TRyATEY . =
- Now, -

‘ &
: s/rg "'

05 (0,2) = ¢/ H-Qufz /r)) + { e My, (0,5-75h )dQ2(h)

’

- s/ry
= - e-(-+x,)s/r3 + g f c-(u»x,u ‘-(o+ll)(s-r,t)/r,dh
0

PP Y

e
D
LR

] R

= ¢g + Myri(e-e2)/r

[a
(]

where

r o= ry(s+rg)-ro{s +)1)
SN and

K i-q’.. WY 'c.
ot U ARAS ST

...
o~ C' -"
«

]

>,
4,":.-.;-.

>

".. J:' a :'__'p ' ’:-.._'- J,\ ..’.t-.’-. ‘v"- _..‘.'. ) "‘?,\}\ ﬁ v Vi ..,‘-
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0.,
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»

.

./'.

Ay (8,2) = {"“Ml..l.z(‘»‘-'z”‘Qm(")

s/r
- A f .e {o +2g)0 [l-e (e 47 Ho-rgh)/r 1]‘*
(‘ +X,; °

Aok
o e o [1=L(r (s +Aa)e r=rols +21)e)].

Thus,

[(s +X:)(s +M)-X12)\21]+’\12)\m[':'(' 1(8 +Xo)e ~ro(s +)e )]
IESW W)

-k (e,2)] =

and

2 (.2)

Mualo2)= o oey

- [ -Aari)egtAg rie (o +7 )Xo +))
r [(o +2: )0 +ra)-Midas]+ Midalr (o +Xg)e y-rofs +X)e )

From equation (4), we have
My (e,2)= Ml..l (s.2) + My, (¢,2)M32(s ,7)

A .
=e;+ T:‘Ei—l)‘ (1-¢,)M 152 (s ,2).

Steps 7 & 8. Obtain M,,,, (s,2) by solving equation (5).

Mx.z.z.s (6,2) = a50,2) + d(0 2 )Mx-z.z,s(‘ %)

_ _sale,2) ~*
[1-bf(e,2)] -]

Now,

s/rg o/rg

enfe,z) = {"'“st(")*‘ ,{ e Mss(s,3-r2h)dQu(h)

% B P
)

2

¢
aala

LYAN [ s/ry
- Xuf c_(,...wg & 4 D I c-(a+xgh [l_c-(l-ﬂ,)(c-v,l)/r,]‘h
0 (‘ +Xl) 0

XSS

.'.:‘. ; '.’.J

’A
Lo '.'.'.l“

LAY

a5, ,.- o "lf ..v'..r ..-'q.-‘ (X ~q‘..f AR
- o
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: - [Ms(o +M1}+AaiMs(1-€ Mgy ar (s + MoK e e o) /7 }
: (0 +X:)(s +X5) 2
‘ s/ry . -
AN bofe ,2) = .{ e My (0,2-r3h)dQy(h) ~
N e/re :;_:
& - (:l.:)::) { N f1-c - +x,)(.-.,n/.,] @ o
- = Mdailr+ro(e +hi)esr (s +Ag)ey)
2 (s +0)(s +72) -
- Thus, .
_ - r ((‘ +X,)(a +Xg)—X12XQ1]-—Xl2XQ [fz(l +A )G T (G +A )C ] s
: 1=bzfe,x) P +x,)(la ) — .
- and .
> . 63as ,7) - 5
- M ©5)= Gy %
< _ Do FA1-e kMl Aaduslr e +A)egr{o +3ge ] i
r (o 200 + 2 Mg M idalr (s +Dg)e -rsls +21)eg] ‘ .
From equation (8),. we get
Mpys(e,2) =M 3(0,2)+ Mya(0,2)Mppas(s 2)
: = oo M .
(e +2) [Mas+Xge 1223 (0,2)).
Steps 9 & 10. Obtain Fy (s ) by solving equation (7).
g Fi (0) = gl Jehulo s (o) 3
- g3(s) :
o (1-hasfs )] -
) gs(0) = {¢-‘/"(1-Qs(' /r3))dG (2) :
w?®/7y .::-.
+ { { e Mys(s,2)dQ(h)dG (2) 2
g o]
e %
& .
” :'~"
s “.4
> 0
. )
X T A R R :
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" oo 8/rg
3 + { { e* My, (0,5-r38)dQ4(h )dG (2)
N - Te‘“ P lrage (2)
N ]
;_. o« 8/rs
- +an f c-(.“‘”M,-w(c ,z)dh dG(z)
[+ I ]
o /7y
+nf [ e My, (0,2-rsh)dh dG(2)
o 0
oo oo 2/7s
| =5 + -(7*:273)-{(14,)1«4,;2 (s,2)dG () + x,,{ { e M (0,21 sh )dh 4G (2)
' with
& =G (e er)e/n) = [P G ), i =128
/]
-_fj and
' o8/t «®/rs
- Aasls) = { { e~ Miaaa(s,2)dQso{h )dG () + { { e M1 (s,5-r34)dQ (A )dG (2)
o ®/ry o /s
- Xu{ { eV Mo (0,2)dh 4G (2) + Ay { { Ay (0,5-rsh )b dG(2)
. oot /Ts .
= -(‘L:i-;)-{ (1-eg)Myg23(s ,2)dG (2) + xm{ { e Moia(e,2-rsh)dh 4G (2).
Thus,
2 : T0)
) e =0
= o oot /s
: (6 +Xg)es +Xg {(l-c )M 1058 ,2 )dG (2 1+ Ag(0 +)s)) { { e M (0.2-rsh )b 4G (2)
= o0 ot /rs
(s +xa)"‘a{ (1-e3)M 1505 (8,2 )G (2 )-Dgy(s +M){ { ety 1213(8,8-rsh )dh dG(2)
, From equations (8), we have
¥ Fi =My (s)+ Mysa(0)F5 (o)

and

\.- ............. R RS ..;‘:"-:'.-:~' AN

s

RS
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Fy (s) =Mz (s) + Miass(s)Fs (o).

Clearly,

F ()= $PEO=)F (o).

5. An Applicetion: A Syetem with Two Types of Breakdown end Repeasr

. Consider a job to be executed on a computer system. The system is subject to three types of Pois-

son failures:

1)  Preemptive-resume (prs ) failures, which occur only when the system is operating normally, i.e., in

E state “1”, at a rate \j3. Following a prs failure the system undergoes a breakdown period, of & gen-
{ . eral distribution Ry(z) and LST R, (s), after which the interrupted job resumes service.
b

2)  Preemptive-rer=at-different (prd ) failures, which occur when the system is either operating normally -

or undergoing a prs breakdown period, i.e., either in state “1” or in state “‘2”, at rates ;3 and Ay,
respectively. Following a prd faiiure the system undergoes a breakdown period, of a general distri-

bution Ry(z) and LST Ry (s ), after which a new independent job with work requirement distribu-

tion G (z) is restarted.

3) System failures, which occur in any state of the system operation, i.e., states “1”, “2" and “3”, at

rates Ay, Agp and )y, respectively. These are absorbing failures. A state tramsition diagram ::Z]

. ")
. representing the system is shown in figure 1. In this case we partition the states as follows (in accor- e
dance with section 3): the pre set, S;={1,2}, and the prd set, Sy={8}. Note that S, is an empty
- set, since there are no pri states. Obviously, we set ry,=1 and ry=ry=0. 1
In order to obtain the LST of the job completion time, F, (s ), we follow the procedure in section 3. v
:‘. Let H be the holding time in the initial state, then ::::-3
: Quils)=P(H S ;. Z(H+) = 5 | Z(0)=1), ;=023 ]
5 and 3
. .o
- -".‘_1
: )
Yy
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Qi(s)=P(H <2 |2(0)=1) = Qudz) + QuAs) + Qualz).

Let \; == Ao + Aj2 + )y, then from the Poisson property of the different types of failures, it follows that

|
-

..
-

.

'

-
"
-

"
-
v
.
.

. A .
Qo) = —1— , ;=023

s +)

. ' and

i ) A

- Qi (s)= PES Y

i Stépo 18 ¢ Obtain M, (s ,w) and M,,’(s ,w ) from equations (1).
‘{':,‘ - 1-Q; (s+4w . -,

N M:.l'(‘+w)=—"'l—(—"-)+912('+w)Mm (s,w) ,

s+w
M2 (s,0) = Qa (s )M;,"(e,).
1t follows that
My, (0,0) = [0 +94+2-23Qq (o))
Inverting with req;ect to w, we have
L Mx-,n (6,5) = c-(.-n,-qu,', (o)ls
and

Mig(s,2)=Qu ()M, (0,2) = Qs (s )e"' Siduln bl

« Steps 3 & 4. Obtain M, ,5 (s ,w) and M, ,% (¢ ,w ) from equations (2).

‘ Mys(ow)= M + Qu (e +w)M2s(s,9),
Mos(s,w) = Q”v(‘ ) + Qa ()M 115 (s,0).

It follows that

,. ‘e Mst+A12Qas (o)

2] Ml"" (o .') = w [l +w +X|-X‘QQQ-1 (o )]
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NEMEASE! AR

Inverting with respect to w, we get

- Ayt " . * (Ve
Miis(e,2)= 15+213Q 2 (2) (1o ru0s (e

~IR.
)

(1~
o +20~-212Q 2 (o)

DR

O

V. and

3N

LS

.

[

Migs(s,2) = Qo (o) + Qz (6)My13(s,2)

- (6 +21)Q2s (8) + M3Q2 (8 Q2 () Mis+)12Q s (o )]c'-"“'.x"o’.l (o)ls
PESYE WMD) ’

St?pa 5868788 Since S, is an empty set, it is clear that
Mp,(s,2)=M,(s,2),
Mpa(e,2)=M,3(s,2),
Mpys(s,2)= M 5(s,2),
M,'”’,(c 2z )= M{'u (s ,2).
Steps 9 8 10. Obtain Fy (s) from equation (7).

Fs (8)=gs(s) + hsolo)Fs (o),

where

e~ Ml-.l (s,2)dQ (A )dG (2)

ot— §

!a(‘)=}°
0

== Mx:x (s )Qa.x ()

and
hyg(e ) = { {"" Mi1a(s,2)dQy(h)dG (z)

= My53(6)Qu (o),
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M‘:l(‘)g {M]:](‘,S)‘G(l’)
=G (e +M-212Q2 (¢))

and

Mn-.x.a ()= {Ml..l.a (e,2)dG (z)

- )\xs+)\1202.3.(‘)
8 +0-22Q2 (o)

[1-G (s XM 2@z (2))i-

It follows that

; gs(e)

‘ Fa (' ) = 1-h ”(‘ )
% _ Qe M, (s)
. 1-Qq (s)Mia(s)
From equation (8), we have
_ F; (l)'=M1-.l(’)+Ml.,l.l(.)F; (‘)

- Ml-.l (o)

1-Qy1 (6 )My ,5(s)

_ G (8422 2Q2 (s))
:: Qa () Ma+212Q 2 (2))
& 8 +0;-A2Q2 (¢ )[1-G (8 +X-212Q 2 (o))}

Now, let us determine the LSTs Qs, (8), Q@2 (s ) and Qas (). We have
Qu(z)=P(H < z;Z(H+)=1]|2(0)=3)

e % dRy(t).

Oy »

Thus

Qs (o) = _{ e dQs (=)
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k b 2 .
t:f 8{ e™ ¢ ® dRy(z) = R; (s +hg).
b We also have
Q2i(z)=P(H < z;Z(H+)=512(0)=2), 5=013.
Then
Qulz) = [ ¢ =" dry(1)
0
and
Qa (s)= f ¢ dQy(z)
)
= [ e VI R () = R, (s +ha0thm).
)
Similarly,
Qu () = [rgs ™% 7% [1-Ry(1)]dt
°
and
Qznls)= {c"‘ dQx(z)
< Agg+) '
= Apfe ™ ¢ Votiul [1-Rg(z ))d=z
0
= ) 1-R; (s +p+X
—m[- 2 (& +hp+Aas)].
Let Ay = Ay + Ags and A3 = Ago. Then substituting in F; (&), we finally get
Fy (s) G (s +M-MzR2 (8 +X)) ~
- ‘ . Ry (8+Xg) sl +Xg)+ M ipdaa(1-Ro (8 +0))][1-G (s +X1-MoRy (8 +)))] o
- (8 +2g){s +2,-MaR 2 (s +X0)] oy
;5 In the case where system failures may not oceur, i.e., Mg = Agp = Ay = 0, and X;3 = Ags, the above sys- :4
X tem corresponds to a model considered by Castillo and Siewiorek [2]. In this case F; (s) reduces to ':'_
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(8 +213)G (8 +M;-MgR; (8 +)yy))
(s +XisFMaR3 (o)[1-G (s +X-MaR2 (8 +)pa))]

Fy (¢)=

Furthermore, if the job service requirement is deterministic and equal to £ (i.e., G (s) = ¢™* ) then

A

(o +X“)c-l. AR (043 ls

.‘I

)

Fl. ()=

(o +is)MisRy (o)[1—e T H2rRs (ke

The mean completion time of a job, E(T), is given by

P B AR}
' ’1 <,
PR ..

- B(T)=-Fi" (0) =[5 + E(Ra) [ePe" By
. » 13

where E{R3) = - R3 ' (0), is the mean of the breakdown period after prd failures.

6. Conclusions

We have presented a general model for the analysis of job completion time on a system subject to

changes in its structure due to different events. The system behaviour is described by a semi-Markov pro-

cess. A change in the system operstion preempts job service which may later be resumed or restarted
(with or without resampling) at, possibly, a different service rate. We have derived a procedure to obtain e
the distribution of the job completion time. A closed form expression for the La.place Stieltjes Transform ,.1
of the job completion time is obtained in special cases. In the general case we resort to numerical tech- -
niques; this is an open problem for further research. In this paper we have restricted our attention to the -
execution of a single job on the system. The obvious extension to the case where an additional delay may

be experienced due to queueing is being investigated. -
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